
Part II of this volume describes sampling designs for efficiently estimating
abundance of rare species and populations, with a greater emphasis on the
first stage of a two-stage design, that is, probability-based selection of sam-
pling units. Consequently, Part II serves as a starting point when develop-
ing a design for sampling rare or elusive species.

Adaptive cluster sampling is a relatively recent design for sampling
individuals that are spatially clustered within a relatively small portion of
a study area. Although much recent work has been devoted to its theoret-
ical development, Smith et al. (Chapter 5) venture beyond theory to pro-
vide an evaluation of adaptive cluster sampling when applied to real pop-
ulations. They describe practical examples of this design and offer
guidelines for its usage. In the next chapter, Manly describes an alternative
adaptive approach to estimating abundance of rare species based on a two-
phase, stratified sampling regime. Christman completes this section by
reviewing the sequential sampling design, another form of adaptive sam-
pling, and uses it to estimate abundance of a waterfowl population.

SAMPLING DESIGNS FOR
RARE SPECIES AND
POPULATIONS

Part II
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Adaptive sampling is appealing because it mimics how biolo-
gists would like to collect data—at least more so than most statistical
sampling techniques. When adaptively sampling, biologists search for a
species of interest at predetermined locations, and if the species is found,
searching continues nearby. This procedure usually produces a biased
sample when applied to spatially clustered species because occupied habi-
tat will be sampled disproportionately. Fortunately, Thompson (1990 and
subsequent papers) showed how unbiased estimators of density and
abundance could be obtained by following the adaptive cluster sampling
procedure.

Additional appeal of adaptive cluster sampling can be attributed to its
statistical properties. For species that tend to be rare and spatially clus-
tered, adaptive cluster sampling has the potential to be efficient; that is, it
can result in estimators of population density or abundance with smaller
variance than conventional sampling methods for equal effort (Roesch
1993; Brown 1994; Smith et al. 1995; Christman 1997; Lo et al. 1997). Get-
ting reliable information on rare and spatially clustered species can be
challenging and costly, so any increase in reliability of information or
reduction in survey cost is welcome and desirable.

It must be noted, however, that a theoretical increase in efficiency alone
is not sufficient motivation to move a statistical method from theory to
practice. There is little gain if a method, no matter how promising, is not
put into practice. Paraphrasing John Tukey (1986:97), practical efficiency is
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equal to the statistical efficiency of a method times the probability that the
method will be put into practice.

Despite its promise, there have been few real applications of adaptive
cluster sampling in the published literature. By far, studies have focused on
theoretical considerations and simulation studies (e.g., see Thompson 2003
and articles therein). The reason for this pattern, we believe, is two-fold.
First, the methodology is still relatively young, and it takes time for 
new methods to work their way into common practice. Second, a set of chal-
lenges tempers the appeal of adaptive cluster sampling. In our view,
challenges when applying adaptive cluster sampling include:

1) Increased efficiency is not guaranteed, and in fact efficiency depends
critically on the spatial distribution of the target population.

2) The final sample size is random and, as such, not known prior to the
survey.

3) Data collection can be complex under field situations.
4) Adaptive sampling may need to be modified for mobile animals or 

sensitive species and habitats.

Our objective in this paper is to present the challenges that a biologist
will face when considering the application of adaptive sampling, to offer
suggestions for overcoming those challenges, and to highlight areas where
method development will improve the practical efficiency of adaptive sam-
pling. We first introduce adaptive sampling and review its literature. We
then outline the main challenges that a biologist faces when putting adap-
tive sampling into practice. Afterward, we present case studies to illustrate
the application of adaptive sampling to biological populations. Finally, we
summarize and discuss future directions.

Application of Adaptive Cluster Sampling
Since Thompson (1990) introduced the adaptive cluster sampling design, a
substantial literature has developed. The literature can be classified into
three categories: modifications of the basic design; simulation studies to
provide guidelines on effective application; and most recently, applications
to real biological populations from which practical issues have emerged.

Introduction and Review of Adaptive Cluster Sampling

Adaptive cluster sampling, which was created by Thompson (1990), has a
large number of possible designs. With the most basic adaptive sampling
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design, initial sampling units are selected from a defined population
according to a conventional probability-based sampling design. For exam-
ple, the process could begin with simple random sampling without replace-
ment as shown in Figure 5.1A. Observations in the initial sample units
determine whether additional (adaptive) units are selected. If the observa-
tion in an initial unit meets some condition, adaptive units are selected in
its neighborhood. The neighborhood of a unit, which includes itself and
nearby units, can take a variety of shapes (Figure 5.2). However, a neigh-
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A

B

Figure 5.1. An example of adaptive cluster sampling. The study area con-
sists of 400 units. The value within a unit is the count of black dots. There are
three networks of black dots in the population. An initial simple random sam-
ple of 10 units is shown in (A). One of the initial units lands in a network of
black dots, triggering adaptive sampling. The final sample of units is shown
in (B).
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borhood must be symmetric in that if unit A is in the neighborhood of unit
B then unit B is in the neighborhood of unit A.

For biological populations, the condition to adapt is typically based on
the count of organisms exceeding some predefined level, such as a count > 0.
In turn, if the count in an adaptive unit meets the condition then neigh-
boring units are selected as long as the condition is met (Figure 5.1B). As
a result of this adaptive process, clusters of sampling units are selected.
Within each cluster there are units that meet the condition; this set of
units is called a network. Because of neighborhood symmetry, if one unit
in a network is selected, then all units in the network are selected. The
number of units in a network is the network size. In addition, there are
units in a cluster that do not meet the condition. These units are called
edge units because in a cluster they define the network’s edge. An initial
unit that does not meet the condition is considered a network of size one.

There are several important choices to be made when implementing
adaptive sampling. First, there is the initial sampling design, including
sampling unit size and shape, selection scheme, and sample size. Second,
there are choices that are particular to adaptive sampling, including the
condition to determine whether adaptive units are selected and the config-
uration of the neighborhood. Typically, the condition to adapt is based on
the observation of a unit meeting or exceeding a predetermined value. For
example, a typical condition is to adapt if a species is present in a unit (i.e.,
count > 0). The neighborhood configuration is flexible (Figure 5.2), but a
cross pattern (Figure 5.2B) is currently a common choice. Finally, there is
a choice of estimators. Thompson (1990) derived two unbiased estimators,
based on the Horvitz-Thompson and Hansen-Hurwitz estimators, for
application to adaptive cluster sampling, and he showed how these estima-
tors could be improved using the Rao-Blackwell method. In most compar-

A B C D

Figure 5.2. Possible neighborhood shapes for adaptive sampling. The gray-
shaded unit represents a unit that meets the condition to adapt. The remain-
ing units make up the gray unit’s neighborhood.
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isons, the Horvitz-Thompson estimator appears to be the superior choice
(Salehi 1999, 2003).

The combination of these choices results in a wide variety of possible
adaptive sampling designs. There has been considerable work on designs
resulting from changes to the initial sampling design (see Thompson and
Seber 1996 for an in-depth review of early work). Thompson developed
adaptive sampling designs that use systematic and stratified sampling to
select the initial sample (Thompson 1991a,b). Several authors have consid-
ered incorporating adaptive sampling in two-stage designs (Salehi and
Seber 1997; Zhang et al. 2000; Muttlak and Kahn 2002; Christman 2003).
Roesch (1993) and Pontius (1997) developed adaptive sampling designs
that incorporate selection of the initial sample with probability propor-
tional to size. Adaptive Latin square sampling was considered by Munhol-
land and Borkowski (1996) and Borkowski (1999). Pollard and Buckland
(1997) developed a strategy to combine adaptive sampling in a line tran-
sect survey. Palka and Pollard (1999) applied this strategy to survey harbor
porpoise and found the strategy easy to implement and effective at reduc-
ing estimator variance.

Another area that has received considerable attention is the use of stop-
ping rules to restrict adaptive sampling. Brown (1994) and Brown and
Manly (1998) were the first to explore the performance of adaptive sam-
pling with a stopping rule. The objective of Brown’s stopping rule, which
was triggered when a preset sample size was reached, was to limit the size
of the final sample. Brown’s stopping rule limited final sample size effec-
tively but introduced some positive bias (in many cases) and the final sam-
ple size remained random (Salehi and Seber 2002). Lo et al. (1997) pre-
sented a restricted adaptive sampling strategy in which the stopping rule
limited the amount of adaptive sampling per network. Lo and colleagues’
strategy was applied to estimate Pacific hake larval (Merluccius productus)
abundance, and they concluded that although the estimators were biased,
restricted adaptive sampling resulted in a substantial variance reduction.
Su and Quinn (2003) used simulation to evaluate a stopping rule that was
similar to the one used by Lo et al. They added the stopping rule to an
“adaptive sampling design with order statistics” and found that the mag-
nitude of bias depended on the order statistic, stopping rule, and spatial dis-
tribution of the population.

Salehi and Seber (2002) presented unbiased estimators for designs sim-
ilar to Brown’s restricted adaptive cluster sampling design. They found in
a simulated example that the unbiased estimators yielded smaller mean
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square errors (MSE) than biased estimators when sample size was small,
but that the biased estimators had smaller MSE as sample size increased.
Salehi and Seber (2002) developed stopping rules to reduce the final sam-
ple size. However, Christman and Lan (2001) looked at the problem from
the perspective that conventional sampling might not generate a large
enough sample or yield sufficient observations from a rare population.
This prompted Christman and Lan (2001) to develop an inverse adaptive
cluster sampling design that allows sampling until a predefined number of
nonzero units are selected. Salehi and Seber (2004) presented an unbiased
estimator for Christman and Lan’s design and proposed a new design, the
general inverse sampling design, that avoids selecting an unfeasibly large
sample.

The issue of how to select an appropriate condition has received atten-
tion because the condition to adapt can have a profound effect on efficiency
and expected final sample size (Smith et al. 1995; Brown 2003). If the con-
dition is too liberal, adaptive sampling might be triggered too frequently
and the expected final sample size might be excessively large—even too
large to complete the planned survey. Conversely, if the condition is too
restrictive, adaptive sampling might not be triggered at all and sampling
might be insufficient to achieve desired precision. To help make an effec-
tive choice, Thompson (1996) suggested basing the condition on the order
statistics from the initial sample. This approach, which Su and Quinn
(2003) labeled acsord for “adaptive cluster sampling with order statistics,”
is feasible when the initial sample can be selected in its entirety prior to
selecting the adaptive units. After the initial units are sampled, the obser-
vations are ordered, and the condition is set equal to the rth order statistic
(Su and Quinn 2003). Of course, there remains the challenge of choosing
the appropriate order statistic. Su and Quinn (2003) conducted extensive
simulations of acsord sampling of five populations with various degrees of
aggregation. They found that efficiency and relative bias were determined
by the interaction between population characteristics, initial sample size,
stopping rule, order statistic, and estimator used. Similarly, other simula-
tion studies have shown complex effects of population characteristics and
design factors on the efficiency of adaptive sampling (Smith et al. 1995;
Christman 1997; Brown 2003).

Thompson (1994) identified analytically the factors that affect the effi-
ciency of adaptive cluster sampling. There have been additional simulation
studies to determine what affects efficiency (Brown 1994; Smith et al.
1995; Christman 1997; Brown 2003). In general, factors affecting efficiency
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fall into categories of population distribution, relative and absolute size of
the expected final sample, unit size, or per unit sampling cost. For adaptive
cluster sampling to even have a chance of being efficient the population
must be geographically rare (meaning that organisms should occupy a
small percentage of the units in the population) and the spatial distribution
of the population should be highly aggregated or clustered. Although bias
is not dependent on spatial distribution, efficiency is. Thus, prior knowl-
edge of spatial distribution of the population is important when deciding
whether to apply adaptive sampling. Brown (2003) showed how neighbor-
hood definition and condition to adapt can affect the spatial characteristics
of the population and improve the efficiency of adaptive sampling.

The closeness of the final and initial sample sizes is another important
factor that determines efficiency. Analytically and empirically it has been
shown that efficiency tends to be high when the expected final sample size
is a small percentage increase of the initial sample size (Thompson 1994;
Smith et al. 1995; Brown 2003). However, Christman (1997) noted that
high efficiencies often are reached only when the expected final sample
size is a large proportion of the population. This has implications on
whether adaptive cluster sampling is practical in real applications. By
necessity, sample sizes in real applications are a small proportion of the
population, so achieving the high efficiencies observed in simulated stud-
ies might not be possible in real applications.

Thompson (1994) also noted that efficiency could be increased when
per-unit sampling costs are taken into account. Adaptive sampling will
tend to be efficient when travel cost to sampling units is high, so that cost
of sampling neighboring units is less than sampling units at random,
and when the cost of making observations on units not meeting the con-
dition is less than on units that do meet the condition. This latter condition
could be satisfied when the condition is based on an auxiliary variable that
can be inexpensively measured—for example, by basing the condition on
a rapid assessment or catch per unit effort (CPUE).

Additional work has focused on application of adaptive sampling when
there are multiple variables of interest (Thompson 1993; di Battista 2002;
Dryver 2003; Smith et al. 2003), when observations are incomplete and
detectability is an issue (Thompson and Seber 1994), and when the objec-
tive of the survey is to describe spatial distribution or spatial prediction
(Hanselman et al. 2001; Curriero et al. 2002; Chapter 14, this volume).
Although di Battista (2002) found that adaptive sampling resulted in lower
MSE for estimates of diversity for clustered populations compared to sim-
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ple random sampling, he noted a bias and devised a jackknife procedure to
reduce the bias. Dryver (2003) cautioned that the performance of adaptive
cluster sampling depends on the covariance between species when the con-
dition is based on one species but abundance of another species is being
estimated. In multispecies assemblages of freshwater mussels, Smith et al.
(2003) found that the probability of detecting rare species was greater in
adaptive units. Thompson and Seber (1994) presented a general approach
for incorporating detectability estimates. Pollard and Buckland (1997)
combined adaptive sampling with distance sampling methods to account
for imperfect detectability. The effect of preferential sampling on kriging
methods was examined by Curriero et al. (2002), who used adaptive clus-
ter sampling as an example of preferential sampling. Hanselman et al.
(2001) used variograms to assess degree of spatial clustering and gauge 
the likely efficiency of adaptive cluster sampling of rockfish in the Gulf 
of Alaska.

Aside from adaptive cluster sampling, adaptive allocation sampling
(Thompson et al. 1992) is an attractive alternative in that observations can
be used to stratify the survey area even when prior knowledge of within-
strata variances and means is unavailable. Various sampling designs are
available under adaptive allocation (Thompson and Seber 1996). Some
designs require two passes over the population area (cf. double sampling or
two-phase sampling), whereas others require one pass where the level of
sampling in a particular stratum depends on observations in the previous
stratum. Estimators can be either design-based or model-based (Thompson
et al. 1992).

The list of applications of adaptive sampling to real biological popula-
tions is small, but it is growing and covers a diverse set of taxa. It took sev-
eral years from the introduction of adaptive cluster sampling (Thompson
1990) before the first real applications to biological populations were
reported (Lo et al. 1997; Strayer et al. 1997; Woodby 1998). Up to that point
applications to biological populations were based on simulations (Roesch
1993; Brown 1994; Smith et al. 1995; Christman 1997; Woodby 1998).

Lo et al. (1997) applied a restricted adaptive sampling design to estimate
Pacific hake larval abundance. They concluded that their adaptive sampling
scheme was easy to implement and resulted in a more precise estimator
than a conventional alternative. Also, Lo et al. (1997) noted that adaptive
sampling provided information on patch size, which is an interesting bio-
logical characteristic.

Strayer et al. (1997) applied adaptive cluster sampling to survey of
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freshwater mussels (Unionidae). Their design was essentially that pre-
sented by Thompson (1990) with simple random sampling of 0.25 m2

quadrats at the initial sample and a cross-shaped neighborhood. Because
freshwater mussel density varied among the multiple sites that were sam-
pled, Strayer et al. (1997) used a different condition at each site; the condi-
tion was based on a rapid assessment of density that preceded adaptive
sampling.

McDonald et al. (1999) applied an adaptive version of line transect sam-
pling in an aerial survey of polar bears (Ursus maritimus). Their condition
for adaptive sampling was the detection of polar bears or fresh seal kills
along a 37-km transect line. The neighborhood was defined as parallel
transect lines 9 km on each side of the initially sampled line. The condition
was met on five transect lines, but neither polar bears nor fresh seal kills
were found on any adaptively sampled lines.

Palka and Pollard (1999) combined adaptive and line transect sampling
for a survey of harbor porpoises (Phocoena phocoena). Their design was
based on a strategy presented by Pollard and Buckland (1997) (see also Pol-
lard et al. 2002). Palka and Pollard (1999) concluded that the strategy was
easy to implement in the field and resulted in more precise estimates of
density compared to traditional line transect sampling.

Bradbury (2000 and pers. comm.) described an application of a modified
adaptive sampling design to estimate density of red sea urchin (Strongy-
locentrotus franciscanus). His design was based on a systematic adaptive
cluster sampling design modified for sampling in one dimension (Thomp-
son 1991a). However, the final sample size was constrained by defining the
neighborhood to include the units halfway between the initial systemati-
cally sampled units (Woodby 1998); in that way, the final sample size was
constrained to be no more than twice the initial sample size. Bradbury
(pers. comm.) concluded that the modified adaptive sampling design was
easy to implement.

Systematic adaptive cluster sampling was also the basis for an applica-
tion by Acharya et al. (2000) to assess rare tree species. The tree species
under study were found in clusters, and Acharya et al. (2000) concluded
that efficiency of adaptive sampling depended on cluster size, with great-
est efficiency observed for the species that formed the largest clusters.

Conners and Schwager (2002) implemented adaptive cluster sampling
in a hydroacoustic survey of rainbow smelt (Osmerus morax) in Lake Erie.
Their field trial was limited to one initial transect with adaptive transect
segments parallel to and 1.5 km from the initial transect. The length of the
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adaptive transect segments was equal to the distance over which the con-
dition was met on the initial transect. Conners and Schwager (2002) con-
cluded that application of adaptive cluster sampling is feasible but pointed
out several potential problems, including the need for (1) real-time data
processing to assess the condition; (2) accurate georeferencing to find the
adaptive units; and (3) effective condition and neighborhood definition to
control the expected final sample size.

Hanselman et al. (2003) applied adaptive cluster sampling to surveys of
Gulf of Alaska rockfish (Sebastes alutus, S. borealis, and S. aleutianus) (see
also Chapter 14, this volume). They based the condition on percentiles of
past survey results, allowed a distance of 0.1 nautical miles (nm) between
adaptive tows, and included a stopping rule to restrict the expected final
sample size. Their evaluation focused on the effect of condition and species
distribution on efficiency. Hanselman et al. (2003) compared adaptive clus-
ter sampling to simple random sampling if sample size was equal to the
final sample size minus the edge units and found adaptive cluster sampling
to be efficient.

Smith et al. (2003) applied adaptive cluster sampling to surveys of
freshwater mussels (Unionidae) at 24 independent sites. Their initial sam-
ple was selected systematically, the condition was species presence, and the
neighborhood was the standard cross shape (Figure 5.2B). Smith et al.
(2003) compared adaptive cluster sampling to simple random sampling if
sample size was equal to the final sample size including edge units. They
found that adaptive cluster sampling did not result in lower sampling error
for fixed sample size. However, application of adaptive sampling substan-
tially increased both the number of individuals sampled and the probabil-
ity of detecting the presence of rare species.

Challenges When Implementing Adaptive 
Cluster Sampling

There are four important challenges that a biologist will face when con-
templating the application of adaptive cluster sampling. Before applying
adaptive sampling, biologists should ask themselves the following 
questions:

1) Should I apply adaptive cluster sampling to this population?
2) How large should I expect the final sample size to be?
3) How do I implement adaptive sampling under field conditions?
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4) How can I modify adaptive sampling to account for species biology,
behavior, and habitat?  

Should I Apply Adaptive Cluster Sampling to 
This Population?

The basic challenge is to determine whether adaptive cluster sampling is
appropriate for the population of interest—in other words, “When is it a
good idea to apply adaptive sampling?” In general, adaptive sampling is a
good idea when it is efficient and the uncertainty in final sample size is not
too great. A sampling design is efficient when it leads to smaller variance
for fixed cost compared to an alternative design, which is often simple ran-
dom sampling. The remainder of this section addresses the issue of effi-
ciency, and the next section discusses methods to reduce the uncertainty in
the final sample size.

From a statistical point of view, conventional cluster sampling tends to
be efficient when clusters comprise most of the variation in the variable of
interest. The same rule applies to adaptive cluster sampling, which is effi-
cient when the within-network variance is a high proportion of total vari-
ance. In addition, efficiency of adaptive sampling tends to increase when
the final sample size is close to the initial sample size.

From a practical point of view, adaptive cluster sampling tends to be effi-
cient when organisms are clustered and the clusters are geographically
rare. Geographic rarity means that the sampling units that are occupied by
organisms are a small proportion of all units in the study area. Rarity of
clusters is the most important characteristic. Individuals could be rare, but
not clustered. In that case, networks would be small—typically a solitary
unit—and the within-network variance would be negligible. Conversely,
individuals in a population could be clustered, but the clusters could be
common and numerous. In that case, the expected final sample size would
likely be much larger than the initial sample size. For adaptive cluster sam-
pling to be efficient individuals in the population must be clustered and the
clusters must be rare.

Many ecological populations are clustered. However, it does not follow
that adaptive cluster sampling is appropriate for most clustered or ecolog-
ical populations. For instance, Figure 5.3 shows three populations each with
the same abundance, but with different spatial distributions. The popula-
tion in Figure 5.3A has a few large clusters; its variance to mean ratio is
1.3, 6.75% of the units are occupied, and the within-network variance is
44% of total variance. The population in Figure 5.3B has many small clus-
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Figure 5.3. Three hypothetical populations showing various degrees of spa-
tial clustering and rarity.

Ch05 (75-122)  10/18/04  12:55 PM  Page 88



ters; its variance to mean ratio is 1.3, 6.75% of the units are occupied, and
the within-network variance is 45% of total variance. The population in
Figure 5.3C has a few small clusters; its variance to mean ratio is 3, 3.5%
of the units are occupied, and the within-network variance is 48% of total
variance. It is not obvious which populations would be appropriate for
adaptive cluster sampling. Clustering appears in all populations. The
degree of rarity, as measured by occupancy, is lowest in Figure 5.3C but
does not vary between the other two populations. However, efficiency of
adaptive cluster sampling differs among the three populations (Figure 5.4).
Efficiency is defined here as the ratio of simple random sampling variance
to adaptive sampling variance with sample size equal to the expected final
sample size from adaptive sampling. For population 5.3A, efficiency of
adaptive sampling depends on sample size with efficiency > 1 only for
expected final sample size ≥ 90. A sample size of 90 translates to 23% of
the study site being sampled, which seems high for ecological studies. For
population 5.3B, adaptive cluster sampling is not efficient for a wide range
of sample sizes. For population 5.3C, adaptive cluster sampling is efficient
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Figure 5.4. Results from simulated adaptive sampling of the populations
shown in Figure 5.3. Efficiency is the ratio of simple random sampling vari-
ance to adaptive sampling variance with sample size equal to the expected final
sample size from adaptive sampling. Efficiency greater than 1 indicates that
adaptive sampling is the better design, and efficiency less than 1 indicates that
simple random sampling is the better design.
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and appropriate. So this example indicates that adaptive cluster sampling is
efficient when clusters are small and geographically rare, that it is not effi-
cient when clusters are small and numerous, and that efficiency depends
on sample size when clusters are large and rare.

Other factors affect efficiency in addition to spatial distribution. For
example, both the condition to adapt and the neighborhood definition
affect efficiency through their effect on within-network variance and
expected final sample size. Because the factors interact, simulation is
invaluable for evaluating the efficiency of adaptive cluster sampling. Case
study 1 illustrates the use of simulation to help design an adaptive survey.

How Large Should I Expect the Final Sample Size to Be? 

Another challenge is to plan for uncertainty in the final sample size.
Unlike conventional sampling designs in which sample size is fixed, the
final sample size in adaptive sampling designs depends on what you find
as you sample. The expected final sample size depends on the spatial dis-
tribution of the target population, the condition to adapt, the neighbor-
hood definition, and whether stopping rules are employed in the sampling
scheme. Because final sample size is random, techniques to predict final
sample size are important for project planning. There are no hard and fast
rules to predict final sample size, but there are some guidelines that are
useful for anticipating final sample size in a qualitative sense.

Final sample size will tend to be highly variable in populations that con-
tain only a few large clusters. If by chance the initial sample intersects a
large cluster, many adaptive units will be sampled. If a large cluster is not
intersected, the final sample size will be equal to the initial sample size. In
populations that contain many small clusters, final sample size will tend to
be much higher than the initial sample size.

The condition that triggers adaptive sampling will affect the size of net-
works in the population and, in turn, the final sample size. As the condi-
tion is made more restrictive by increasing the critical value, networks will,
in effect, become smaller and adaptive sampling will be triggered less fre-
quently, resulting in a smaller final sample size. Conversely, a liberal con-
dition that triggers adaptive sampling much more often (a “hair-trigger”
condition) will result in a final sample size considerably larger than the
initial sample size.

Small neighborhoods (e.g., Figure 5.2A or 5.2B) will generate smaller
final sample sizes than large neighborhoods (e.g., Figure 5.2C). Neighbor-
hoods that contain discontinuities where adjacent units are “leap-frogged”
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(e.g., Figure 5.2D) will generate smaller final sample sizes than neighbor-
hoods that include adjacent units (e.g., Figure 5.2B).

Stopping rules will reduce the maximum final sample size but will not
eliminate variation in final sample size. Stopping rules also bias results, but
the extent of the bias might not be large, depending on how it is imple-
mented (Brown and Manly 1998). Several real-world applications have
incorporated some sort of stopping rule (Lo et al. 1997; Woodby 1998;
Hanselman et al. 2003) in which the potential for bias seems to have been
outweighed by the need to control for the final sample size. Case study 2
illustrates the use of a stopping rule.

How Do I Implement Adaptive Sampling in the Field?

Adaptive sampling can be a complex procedure to implement under field
conditions. In addition to the usual challenge of conventional probability
sampling, which is required to take the initial sample, biologists must nav-
igate among adaptively sampled units within a cluster. The key to success-
ful implementation of adaptive sampling is keeping careful records to track
which adaptive units have been sampled and which units remain to be
sampled. In addition, choice of neighborhood, stopping rules, and design to
take initial sample can help ease implementation.

When sampling freshwater mussels in rivers, we find it helpful to start
a map on the reverse side of our data sheet whenever adaptive sampling is
triggered. For example, Figure 5.5A shows a grid that maps the units
within a large adaptive cluster; the numbers refer to the count within a
sampling unit. This grid map of a cluster came from one of our data sheets.
Adaptive sampling was triggered when two mussels were observed in a
unit (indicated by a circle in Figure 5.5). The remaining observations were
mapped and recorded on the data sheet grid as sampling progressed. The
map was indispensable for navigating within the cluster.

Implementation can be streamlined and simplified by choice of neigh-
borhood. For example, the sampling units in case studies 2 and 3 are tran-
sects (or tows) and the neighborhoods are defined as transects that run
parallel to, but some distance from, the condition-meeting transect. In this
way sampling is simplified because you are adaptively sampling in only
two directions rather than four (or more), similar to the neighborhood in
Figure 5.2A. An extreme example of this was presented by Woodby (1998),
in which the neighboring transects were placed halfway between the ini-
tial transects. In Woodby’s design, adaptive sampling always stopped after
one set of adaptive transects was sampled because sampling further would

Application of Adaptive Sampling to Biological Populations 91

Ch05 (75-122)  10/18/04  12:55 PM  Page 91



S A M P L I N G  D E S I G N S  F O R  R A R E  S P E C I E S  A N D  P O P U L AT I O N S92

overlap other initial transects. Woodby’s design essentially uses the neigh-
borhood definition to create a stopping rule.

Stopping rules can ease implementation by reducing the spatial extent
of adaptive sampling. Complexities associated with navigating to adaptive
units and planning difficulties associated with an open-ended final sample
size are diminished when adaptive sampling has a predetermined cutoff.
Case study 2 provides a good practical example of the use of a stopping
rule. Lo et al. (1997) incorporated a stopping rule in a survey of Pacific
hake larvae. In this case, adaptive sampling would not have been possible
without a stopping rule because of the large scale of the survey area.

Choice of design to take the initial sample will influence ease of imple-
mentation. Simple random sampling often is cumbersome under field con-
ditions. Systematic sampling is an attractive alternative for taking the ini-
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Figure 5.5. A cluster of units showing edge units in light gray and network
units in dark gray. The initially sampled unit is circled and has a value of two.
(A) shows the result when adaptive sampling is triggered whenever a selected
unit’s value is greater than zero. (B) shows the result when adaptive sampling
is triggered whenever a selected unit’s value is greater than one.
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tial sample because it is relatively easy to implement (Thompson 1991a;
Acharya et al. 2000; Hanselman et al. 2003; Smith et al. 2003). Systematic
sampling with multiple random starts, which supports valid estimation of
sampling variance and does not add much complexity to implementation,
is preferred over single-start systematic sampling, which is commonly
applied under field conditions. Systematic sampling is known to be an effi-
cient sampling design for clustered populations, regardless of adaptive
sampling (Christman 2000). Case studies 2 and 3 incorporate some form of
systematic sampling for initial sample selection. Case study 1 does not
include systematic sampling but uses simple random sampling instead
because it is a computer simulation of freshwater mussel sampling. When
we have actually applied adaptive sampling to freshwater mussel surveys,
we have used systematic sampling to take the initial sample (Smith et al.
2003).

How Can I Modify Adaptive Sampling to Account for
Species Biology, Behavior, and Habitat?

Special consideration is required when adaptive sampling is applied to
species that are mobile, elusive, or sensitive to handling. The potential for
double-counting is high when animals could be flushed into adjacent sam-
pling units as a result of adaptive sampling. Imperfect detectability is an
issue when sampling elusive animals whether sampling is adaptive or con-
ventional (Thompson and Seber 1994). Because adaptive sampling tends to
result in selection of occupied habitat, the potential for habitat disturbance
is greater than in conventional sampling. If sampling is destructive or
species or their habitats are sensitive to sampling, adaptive sampling might
need to be modified to reduce disturbance.

A solution to problems caused by mobile species is to define neighbor-
hoods that do not include adjacent units (e.g., Figure 5.2D). The separation
between within-neighborhood units can be selected to exceed flushing dis-
tance. If aggregation size is smaller than the flushing distance, adaptive
sampling methods would not be advantageous. There would be no value in
adaptively sampling if the neighborhood jumps over the aggregation.
Another approach for mobile species is to base the assessment on an index
of species presence, as was done in case study 2.

Imperfect detectability is a pervasive issue in field studies of animal
populations (Seber 1982). Numerous strategies have been developed to
adjust for imperfect detectability, which would lead to underestimates of
animal abundance if left unadjusted. In the context of finite population
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sampling, such as when sampling units are selected and then counts of ani-
mals are made on the selected units, imperfect detectability is dealt with by
first adjusting for detectability on selected units, then expanding the
adjusted per-unit counts to the entire sampling frame. This approach works
for conventional sampling because selection of units does not depend on
detectability, so adjustment for detectability can be handled prior to esti-
mating totals or means. However, detectability can influence the selection
of adaptively sampled units because the condition to adapt is typically
based on a count of detected animals (Thompson and Seber 1994). For
example, suppose that in truth an initial unit should trigger adaptive sam-
pling because it is occupied by a species. In practice, neighboring units
might not be selected because the animal in the initial unit might not be
detected, in which case adaptive sampling would not be triggered. Thomp-
son and Seber (1994) solve this dilemma by turning the problem around
and first estimating the population of detectable animals and then adjust-
ing that estimate by an independent estimate of detection.

Let us consider an example of how to design adaptive sampling to
account for imperfect detectability. Detectability is an issue in surveys of
freshwater mussels because they are benthic organisms that position
themselves at various depths of the substrate. Some mussels are readily
detectable at the substrate surface by visual or tactile observation, but
some are buried below the surface and must be excavated for detection. To
estimate total abundance or density, some amount of excavation is
required and double sampling can be used to adjust for detectability in an
optimal way that balances effort and precision (Smith et al. 2000). Double
sampling in this case involves excavating a subsample of quadrats. The
ratio of mussels detected on the substrate surface in excavated quadrats to
total mussels in excavated quadrats is used to estimate detectability. Dou-
ble sampling can be applied to an adaptive sampling design by excavating
a subsample of the initial sample of quadrats. Adaptive sampling is used to
estimate the detectable portion of the population; then the estimate of
detectability from double sampling is used to adjust and estimate total
abundance. Thompson and Seber (1994:219–220) provided a formula for
incorporating an estimate of detectability into adaptive sampling estimates
of abundance.

Some organisms are so sensitive that the mere act of sampling can be
detrimental by interfering with survival or reproduction. In some situa-
tions, animals must be captured to be observed, habitat must be altered to
collect animals, or plants must be removed to measure biomass. In such sit-

Ch05 (75-122)  10/18/04  12:55 PM  Page 94



uations, sample size is of concern not only to control survey cost but also
to reduce disturbance. The potential for disturbance is elevated for adaptive
sampling because it tends to allocate effort into occupied habitat.

When sampling-related disturbance is a concern, a potential solution is
to base the condition to adapt on a less invasive method of sampling. In
that way, the impact from sampling the edge units, which form a large por-
tion of the final sample, will be reduced or even eliminated. For example,
American ginseng (Panax quinquefolium) is a rare, low-growing plant
that is susceptible to trampling when being surveyed (John Young, U.S.
Geological Survey, pers. comm.). One strategy to reduce disturbance dur-
ing sampling would be to base the condition to adapt on a geographic
information system (GIS)-based prediction of habitat (Boetsch et al. 2003).
All sampling units (both initial and adaptive units) could be selected using
GIS. The initial sample selection would be probabilistic and clusters of
adaptive units could be selected based on predictions of habitat. In that
way, edge units would never have to be visited in the field and travel to and
among sampling units could be planned to minimize potential for distur-
bance and to reduce travel time.

Case Studies
We present three case studies to illustrate the design and application of
adaptive sampling methods. These examples do not illustrate all potential
challenges, but are based on our experiences and represent some of the
practical challenges faced when implementing adaptive sampling.

Case study 1, from D.R.S., demonstrates the use of simulation to design
an effective adaptive sampling survey. The objective was to estimate den-
sity of freshwater mussels, a class of often rare and endangered organisms.
In this case, simulation helped to identify an adaptive sampling design that
would be appropriate for populations similar to the study population and
to plan for final sample size that would result from the design’s implemen-
tation.

Case study 2, from J.A.B., discusses the application of adaptive sampling
to a monitoring protocol for Australian brushtail possum (Trichosurus
vulpecula), which is a nuisance species in New Zealand. In this case, the
basic adaptive cluster sampling design had to be modified because the tar-
get organism could not be observed directly. Instead, an index of possum
activity was observable, which created a time lag between selection of the
sampling unit and the observed response.
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Case study 3, from N.C.H.L., demonstrates the generality of adaptive
sampling procedures. In an application to Pacific sardine (Sardinops sagax)
assessment, adaptive sampling procedures are incorporated in a complex
survey to allocate effort among strata and to reduce variance. This case
study also illustrates application of adaptive sampling in a large-scale sur-
vey, where navigating among sampling units is a costly endeavor.

Case Study 1: Assessing the Effect of Condition to Adapt
on Estimates of Freshwater Mussel Density

Freshwater mussels (Unionidae) represent a diverse assemblage including
more than 300 species that are suffering an extinction rate higher than any
other North American fauna (Ricciardi and Rasmussen 1999). Efficient
sampling to assess and monitor mussel populations has become a critical
need for malacologists and managers (Smith et al. 2001; Strayer and Smith
2003). The fauna tend to cluster and are often rare and at low density
(Smith et al. 2003; Strayer and Smith 2003). Thus, freshwater mussels
appear to be good candidates for adaptive cluster sampling.

Here we use freshwater mussels as an example to demonstrate how
simulation can help determine how best to design an efficient adaptive
cluster sampling survey. Application of adaptive cluster sampling is logis-
tically feasible because freshwater mussels are not readily mobile and they
can be observed directly (Smith et al. 2003; Strayer and Smith 2003). How-
ever, as in many real-world situations, selecting a proper value for the con-
dition to adaptively sample presents a challenge. Simulations provide an
excellent method to compare a range of alternatives prior to implementa-
tion. For this study we had access to a complete count (census) of freshwa-
ter mussels at a river site. Alternatively, a population can be generated
based on a sample of data and assumptions about the spatial distribution.

Methods 

We counted all mussels on a section of riffle habitat in the Cacapon River
near Capon Bridge, West Virginia. The river section was approximately
rectangular and measured approximately 40 m wide (bank to bank) by 90
m long. The substrate surface was thoroughly searched within a grid of
0.25 m2 cells, and mussels were measured lengthwise and returned to the
substrate. Figure 5.6A shows clustering in the population of freshwater
mussels (Elliptio complanata) at the site (black squares in Figure 5.6A rep-
resent areas that were occupied by mussels).
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Figure 5.6. Population of freshwater mussels in a riffle in the Cacapon River
at Capon Bridge, West Virginia. The cross-hatch indicates land. White indi-
cates river substrate unoccupied by mussels. The remaining area is occupied by
at least one mussel. Black squares show areas that meet the condition to adapt
in a sample unit. Gray squares show areas that are occupied but do not meet
the condition to adapt in a sample unit. The condition, which is based on the
count per 0.25 m2, changes among the panels. In (A), adaptive sampling would
be triggered if any mussels were found. In (B), adaptive sampling would be
triggered if at least three mussels were found. In (C), adaptive sampling would
be triggered if at least five mussels were found.
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We simulated the implementation of adaptive cluster sampling with
0.25 m2 quadrats as the sampling unit, simple random sampling to take the
initial sample, and a cross-shaped neighborhood (Figure 5.2B). Sampling
was simulated using a range of conditions to adapt. The condition to adapt
was of the form yi ≥ c, where yi was the count of mussels in the ith quadrat
and c was the critical or threshold value. We considered c from 1 to 5. For
example, when any mussels are present in a quadrat and c = 1, then adap-
tive sampling is triggered. We compared within-network to population
variance, initial to final sample size, and sampling efficiency that resulted
from each condition. Efficiency was defined as the ratio of sampling vari-
ance from simple random sampling to adaptive cluster sampling given
equal sample size, that is, sample size for simple random sampling was set
to be the expected final sample size from adaptive cluster sampling. Simu-
lations were replicated 1,000 times and results were averaged across the
replications. Software used for this simulation can be found at http://www.
lsc.usgs.gov/AEB/davids/acs/.

Results 

The condition to adapt, in effect, partitions the study area into networks.
In Figure 5.6, black squares indicate areas of the population that form the
networks that meet the condition. Each panel in Figure 5.6 shows results
from a different condition.

In this population, the condition to adapt had a strong effect on the
within-network variance, ratio of final to initial sample size, and efficiency
(Figure 5.7). For a condition of yi ≥ 1, the within-network variance was
more than 40% of total variance, final sample size was nine times initial
sample size, and efficiency was only 0.2. Within-network variance
decreased, final sample size decreased, and efficiency increased as the con-
dition became more stringent (Figure 5.7).

Discussion

As the condition becomes more restrictive the proportion of the popula-
tion that meets the condition shrinks. This leads to two important results.
First, the within-network variance decreases as the range of values within
a network is truncated. For example, when the condition is yi ≥ 1 a network
could contain values ranging from 1 to the maximum count; only units
with counts equal to 0 would be excluded from networks that meet the
condition. However, when the condition is yi ≥ 5 the range of a network’s
values would be limited from five to the maximum count. Second, as the
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condition becomes more restrictive, the expected final sample size
approaches the initial sample size. This is caused by the reduction in net-
work size—there are simply fewer sampling units in networks as the con-
dition becomes more restrictive.

Interestingly, these two results act in opposite directions on the sam-
pling efficiency. A reduction in within-network variance reduces efficiency,
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shown in Figure 5.6. Sampling was simulated for a range of conditions to adapt
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all else being equal. In contrast, efficiency increases as expected final sam-
ple size approaches initial sample size. The ultimate effect on efficiency
depends on the net effect of the interaction between within-network vari-
ance and final sample size. In this case study, the reduction in final sample
size had a greater effect on efficiency than reduction in within-network
variance, but this will not always be true.

From the simulation we learned that adaptive cluster sampling would be
a good idea only if we set the condition correctly. A restrictive condition
was correct for this population. We also learned that it would have been a
bad idea if the condition were set too liberally. In retrospect, it is apparent
that the freshwater mussel population, although clustered, was not rare
enough for adaptive cluster sampling to be efficient. By restricting the con-
dition to adapt, we effectively made the population “rare,” or at least the
networks that met the condition became rare. If density was lower at the
site, as Smith et al. (2003) found, a more liberal condition would have been
feasible.

This result is specific to this population. In general, it is not necessary
for efficiency to increase as the condition becomes more restrictive. This
case study points out the utility of simulation before implementation.
Simulation is a powerful method to evaluate efficiency across a wide range
of alternative designs. In the absence of simulation we would not have
been able to predict an efficient condition without a lengthy and expensive
series of field trials.

Case Study 2: Monitoring Possum Abundance in 
New Zealand

The Australian brushtail (Trichosurus vulpecula) is a major environmen-
tal pest in New Zealand. These marsupials were first successfully intro-
duced from Australia in 1858 to establish a fur industry. They rapidly
spread so that today, about 70 million possums live throughout more than
90% of mainland New Zealand (Pracy 1974; Cowan 1990; Clout and Erick-
son 2000). Possums are considered a serious pest in New Zealand, prima-
rily because they defoliate preferred plant species, predate bird eggs and
chicks, and carry bovine tuberculosis, which poses a major threat to New
Zealand’s beef and venison industries (Green 1984; Cowan 1990; Brown et
al. 1993; Coleman and Livingstone 2000).

Various government and private agencies in New Zealand expend con-
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siderable effort to control possums using either traps or poisons. There-
fore, an accurate and efficient method for monitoring possums is necessary
to assess whether control strategies are effective. Until recently, the pri-
mary index of possum density was based on lines of leghold traps. The
major disadvantage of monitoring possums using traps is that it limits
sample sizes to low levels because of the amount of labor required to trans-
port and check traps (Brown and Thomas 2000; Thomas et al. 2003). A new
monitoring method is being developed in New Zealand using a device
called WaxTag, which contains a possum-specific attractant. The possum
bites a wax block on the end of the tag, and the frequency of bite marks is
used to calculate an index of possum density. Bite marks from other species
can be distinguished from possum bite marks (Thomas et al. 1999).

Possum distribution is known to be clustered, and if residual hot spots
can be detected, follow-up control can be targeted to specific locations.
Adaptive sampling could be used to assess residual possum population size
and to provide information on the spatial pattern of the remaining animals.
The use of WaxTags creates the potential to use more informative survey
designs, such as adaptive sampling, because large sample sizes are possible.

It is important to note that when using WaxTags for monitoring, the
frequency of bite marks is considered an index of possum activity rather
than an estimate of possum numbers because one possum can bite more
than one WaxTag. An index based on possum activity is more biologically
meaningful than an estimate for low possum densities because the envi-
ronmental effect of one possum compared with the effect of multiple pos-
sums is of less concern than the environmental effect of some possums
compared with no possums.

In this study, we assessed a practical application of using WaxTags and
adaptive cluster sampling to monitor possums. The aim was to develop a
survey protocol similar to the existing protocol for leghold traps but which
also provided information on possum population size and spatial pattern.
Thus, tag lines were set up using systematic sampling, and then additional
lines were set up on either side of the initial lines during an adaptive phase.
The new monitoring protocol needed to be modeled on the existing trap
protocol because of the widespread use of the existing method. The possum
control industry would be more likely to respond positively to incremen-
tal changes in the monitoring methodology than to a completely new
model. For this reason, lines of WaxTags were used as the sample unit as
prescribed for traps by the existing protocol.

Application of Adaptive Sampling to Biological Populations 101
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Methods

Two sites were used to test adaptive sampling using WaxTags: Balmoral
Forest and Eyrewell Forest in North Canterbury, New Zealand. At each
site, an initial sample of 15 lines was placed at 500-m intervals (Figure 5.8).
Each line consisted of 10 WaxTag stations spaced 20 m apart. At each sta-
tion, two WaxTags were nailed to opposite sides of a tree. The WaxTags
were left for three nights, and on the fourth day the number of stations
with possum interference was recorded.

The adaptive phase of the study was designed according to the results
from the initial lines. The three lines with the highest frequency of bite
marks were chosen as the lines that “triggered” adaptive sampling, and
five parallel lines spaced 50 m apart were set on both sides of each of these
three lines. The WaxTags on these lines were left for a further three nights
and the number of stations with possum interference was recorded.

The adaptive lines were all set at the same time rather than in a sequen-
tial pattern typical of most adaptive cluster sampling. This method was
chosen because the sample units could not be assessed immediately. The
lines were left out for three consecutive nights because possums are noc-
turnal and because it can be difficult to detect possums when populations
are small.

Results

The possum population at Balmoral Forest was extremely small. After
three nights, only three initial lines had any possum bite marks (Lines 6,
8, and 15; Table 5.1). On each of these lines, only one station had bite

Figure 5.8. Layout of possum monitoring lines. There were fifteen lines at
each site; six are shown here (solid lines). Lines were spaced 500 m apart, and
along each line there were 10 WaxTag stations spaced 20 m apart. In the fig-
ure, the third solid line from the left “triggered” adaptive sampling and five
parallel lines on both sides, spaced 50 m apart, were set (dashed lines). There
were 10 stations spaced 20 m apart along each adaptive line.
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marks and hence the condition to trigger adaptive selection was one (see
Discussion section for elaboration on this point). The frequency of bite
marks on the adaptive lines that were placed parallel to lines 6, 8, and 15
was also very low. In fact, after three nights, throughout the 30 adaptive
lines, bite marks were recorded at only one station on the first adaptive line
adjacent to line 15 (Table 5.1).

Higher rates of bite marks were observed at Eyrewell Forest than at Bal-
moral Forest; 13 lines detected possums (Table 5.2) at Eyrewell. Lines 6 and
11 clearly had the highest frequency of bite marks (eight and nine stations,
respectively), but four lines had five stations with bite marks. However, the
spatial pattern of possum activity differed among these lines. Only Line 1
had three adjacent stations with bite marks; the other three lines had only
two adjacent stations with bite marks. Thus, the condition for adaptive
selection was given an extra layer of complexity by counting first the
number of stations with bite marks (five), and then second, the number of
consecutive stations with bite marks (three). The spatial aggregation com-
ponent was introduced into the condition because one goal of this study
was to detect aggregates of possum activity.
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Table 5.1. 

Number of WaxTag stations with possum interference on 
15 initial lines and 30 adaptive lines at Balmoral Forest, New Zealand.
The initial lines were left out for three nights, and then five adaptive

lines were set on each side of the three initial 
lines with the highest interference. Blank cells indicate no 

data because adaptive lines were not placed parallel 
to 12 of the initial lines.

Initial line number

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Adaptive line A 0 0 0
Adaptive line B 0 0 0
Adaptive line C 0 0 0
Adaptive line D 0 0 0
Adaptive line E 0 0 0
Initial line 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1
Adaptive line F 0 0 1
Adaptive line G 0 0 0
Adaptive line H 0 0 0
Adaptive line I 0 0 0
Adaptive line J 0 0 0
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Discussion

The sampling design used in this study is a modification of the usual adap-
tive cluster design. These modifications were made because of the specific
challenges of monitoring low-density possum populations in New
Zealand.

The first challenge was that the sample units in this case could not be
assessed immediately. WaxTags, or any other device used to record possum
activity, must be left overnight because the species is nocturnal. Further-
more, when animal numbers are low, the devices need to be left for more
than one night (three is the standard practice) to ensure that resident pos-
sums have an adequate chance of encountering the device. As a result, it
would have been too time-consuming to sequentially sample within a
detected cluster. Instead, a maximum of five lines on either side of the ini-
tial triggered line was used, which limited the maximum size of a cluster
but was the most practical option for a monitoring technique that will need
to be both efficient and cost effective.

The practice of setting all five lines on either side of an initial line does

Table 5.2. 

Number of WaxTag stations with possum interference on 
15 initial lines and 30 adaptive lines at Eyrewell Forest, New Zealand.
The initial lines were left out for three nights, and then five adaptive
lines were set on each side of the three initial lines with the highest
interference. Blank cells indicate no data because adaptive lines were
not placed parallel to 12 of the initial lines. All adaptive lines parallel 

to the three initial lines had possum interference, but only those 
shown in bold were above the adaptive selection condition.

Initial line number

Line 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Adaptive line A 4 4 8
Adaptive line B 3 7 9
Adaptive line C 7 6 4
Adaptive line D 5 4 6
Adaptive line E 2 3 8
Initial line 5 4 5 4 2 8 4 4 3 5 9 5 0 0 4
Adaptive line F 9 6 10
Adaptive line G 7 5 8
Adaptive line H 6 8 5
Adaptive line I 5 9 5
Adaptive line J 3 9 4
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raise some important analytical questions. First, the design restricts the
maximum size of a network to five lines on either side of the initial line,
which introduces bias because the network size and inclusion probability
are incorrectly calculated for large networks. Second, given that this design
yields data on the rate of bite marks from all 10 lines (five on either side),
should all of this information be used to estimate the possum index, or
should we use only the information that would have been gained if lines
were sequentially set? For example, if we had set the adaptive lines sequen-
tially next to Line 1 at Eyrewell Forest, the adjacent Adaptive Line 1E
would have been set first. However, because it had a value of 2, which was
less than the condition (5), the next four adaptive lines (1A–1D) strictly
should not have been set. Similarly, for initial Line 6, an edge to the net-
work would have been found in the first adaptive line on one side (Line 6E)
and in the second adaptive line to the other side (Line 6G). We feel that the
ideal analysis would use all of the data gathered from all of the lines
because the additional information could add to a more robust analysis.

A more subtle question that arises is how to determine the value that
triggered adaptive selection of adjacent lines. The initial line values given
in Tables 5.1 and 5.2 represent the number of stations with bite marks
recorded after the first three nights. However, at the end of the three
nights when the adaptive lines were set, the initial lines were also reset so
that any WaxTag with bite marks was replaced with a new WaxTag. A sec-
ond value then was recorded for all of the lines after an additional three
nights. In many cases, this second value did not correspond to the first
value recorded on the initial lines. For example, Line 1 at Eyrewell Forest
had an initial value of five stations with bite marks. However, when all of
the bitten tags were replaced and the lines were set for an additional three
nights, the Line 1 value increased to six stations with interference. Simi-
larly, Line 6 had a first value of 8 but a second value of 6, and Line 11 had
an initial value of 11 and a second value of 10. It seems sensible from a bio-
logical standpoint to use the initial values because those values triggered
the adaptive selection. The second values, on the other hand, can be consid-
ered a measure of the temporal change in possum activity on that line. This
temporal change could be a result of possums becoming conditioned to the
presence of WaxTags or to any other source of temporal variation (e.g.,
changes in food supply or weather).

The second challenge in this application of adaptive cluster sampling is
the practical limitations of setting and checking WaxTags. In particular, the
survey effort must be divided into units of person-days, and the number
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of days required to complete the entire survey must be known in advance.
This is because much of the possum monitoring in New Zealand is con-
ducted by commercial businesses that need to run efficiently for the indus-
try to be sustainable. Thus, it is not feasible to have surveys with unknown
completion times, which is characteristic of traditional adaptive cluster
sampling.

This challenge was met by using a constant number of lines in the ini-
tial sample that triggered adaptive selection as well as a predetermined
number of adaptive lines. The sampling protocol was designed around the
need to divide the work into units that one person could complete in a full
day. Thus, the initial sample was set at 15 lines because one person can com-
fortably set this many lines in one day. Similarly, the 30 adaptive lines (i.e.,
10 lines adjacent to three initial lines) could be completed in two person-
days (i.e., two people in one day). In contrast, if we had chosen, for exam-
ple, four initial lines and 10 adaptive lines, this would have equated to 2.67
person-days of work, which would make monitoring operations inefficient
and costly.

The third challenge in this application is that the condition for adaptive
selection was not known (nor could it be predicted) prior to the survey.
Over time, it might eventually be possible to set the condition a priori, but
in this trial we were able to overcome this problem by having a two-phase
design. This design meant that lines had to be checked twice: once in Phase
I to collect the initial sample values and to place out the adaptive lines and
then again in Phase II to check all of the lines again. However, there are
some advantages to this two-phase design. First, the survey effort required
for an initial assessment of the possum activity level (the 15 initial lines)
is clearly differentiated from the survey effort required for the second
adaptive sampling phase. The first phase is analogous to current monitor-
ing protocol, which uses traps, and it can be used to assess whether con-
tractual target levels for control have been met. In contrast, the second
phase can be used to concentrate follow-up control operations on hot spots
or local areas of patchiness. There also are advantages to being able to sep-
arate these two phases for budgeting and financial accounting.

This example illustrates how the adaptive cluster sampling technique can
be modified to help with a real biological problem with practical limitations.
The challenges in using adaptive cluster sampling for monitoring possums
are that the sample unit value can not be immediately gained in the field,
that there are very practical limitations to sample sizes and expenditure of
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field effort, and that with limited knowledge the adaptive condition can not
be set prior to sampling. Given these challenges, adaptive cluster sampling
can be “adapted” and is a very useful tool for possum monitoring.

Case Study 3: Adaptive Allocation Sampling to Estimate
Egg Production of Pacific Sardine 

The Pacific sardine (Sardinops sagax) was once one of the more important
fisheries off the west coast of the American continents. The estimated bio-
mass peaked at 3.6 million metric tons (mt) in 1934 but fell to less than
100,000 mt in the late 1950s and mid-1960s as the fishery collapsed (Mur-
phy 1966; MacCall 1979). In 1949, a survey was launched to help under-
stand the decline of sardines and to monitor their population. The South-
west Fisheries Science Center of the National Marine Fisheries Service has
been responsible for monitoring the spawning biomass of Pacific sardine
by conducting a routine ichthyoplankton survey, commonly referred to as
the California Cooperative Fisheries Investigations (CalCOFI).

The daily egg production method (Parker 1985; Hunter and Lo 1997)
has been used to estimate spawning biomass of Pacific sardine (Wolf
1988a,b; Lo et al. 1996; Scannel et al. 1996; Barnes et al. 1997). The daily
egg production method estimates spawning biomass by (1) calculating the
daily egg production from ichthyoplankton survey data; (2) estimating the
maturity and fecundity of females from adult fish samples; and (3) calcu-
lating the biomass of spawning adults. In this report, we concentrated on
the ichthyoplankton survey.

Because sardine eggs are aggregated (Lo et al. 1996), efficient sampling
methods have been sought. Before 1996, sardine egg production was esti-
mated from plankton net sampling only, like CalVET (Smith et al. 1985).
Since 1996, in addition to plankton nets, Bongo nets and the Continuous
Underway Fish Egg Sampler (CUFES; Checkley et al. 1997) have been used
to sample fish eggs (Hill et al. 1998, 1999).

Since 2001, we have used an adaptive allocation sampling design to esti-
mate daily egg production. This design allocates additional net tows
according to egg densities observed from the CUFES. Plankton net samples
of eggs and yolk-sac larvae are allocated to the high-density area as deter-
mined by CUFES to estimate the daily egg production at age 0 (P0), which
then is incorporated in the daily egg production method to estimate
spawning biomass.
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Methods

In 2002, we conducted a full-scale survey to estimate the spawning bio-
mass of Pacific sardine (Lo et al. 2001). We sampled ichthyoplankton with
plankton nets and CUFES aboard the R/V McArthur (March 21–April 19)
and R/V David Starr Jordan (March 27–April 14). The Jordan segment of
the survey was the routine CalCOFI April survey (http://swfsc.nmfs.
noaa.gov/frd/CalCOFI/CurrentCruise.htm). In addition, we sampled adult
sardine aboard R/V David Starr Jordan (April 14–25) after the routine
CalCOFI cruise to estimate reproductive parameters.

We used egg counts from the CUFES from the 2002 survey to allocate
placement of plankton net tows and to map the spatial distribution of the
sardine spawning population. Following the adaptive sampling procedure,
we towed plankton nets at 4-nautical mile (nm) intervals on each line after
the egg density from each of two consecutive CUFES samples exceeded the
critical value of 1 egg/min. Plankton net tows continued until the egg den-
sity from each of two consecutive CUFES samples was less than 1 egg/min.

We post-stratified the survey area into a high-density area (Region 1)
and a low-density area (Region 2) according to the egg density from CUFES
collections. We determined the stage of eggs from the plankton net tows
and identified yolk-sac larvae from plankton and Bongo net tows in the
high-density area. These responses were incorporated into a model of the
embryonic mortality curve in the high-density area and later converted to
the daily egg production, P0, for the whole survey area. We employed this
adaptive allocation sampling, which is similar to a 1997 survey of Pacific
hake larvae (Lo et al. 2001), aboard the McArthur but not aboard the Jor-
dan because the latter was conducting the routine CalCOFI survey.

We used eggs from plankton tows and yolk-sac larvae from both plank-
ton and Bongo tows in Region 1 to compute egg production (P0) assuming
the embryonic mortality curve was exponential: Pt = P0,1exp(zt), where Pt
was daily egg or yolk-sac production/0.05 m2 at age t days and z was the
daily instantaneous mortality rate (Lo et al. 1996; Lo et al. 2001). We
examined eggs for their developmental stages and converted them to age
(Lo et al. 1996). Due to the small number of tows with eggs, we obtained
egg production in Region 2 (P0,2) by calibration: P0,2 = P0,1 × q, where q was
ratio of egg density in Region 2 to Region 1 from CUFES. The egg produc-
tion for the entire survey area, P0, was a weighted average of P0,1 and P0,2,
where the weights were the area sizes.

We used the estimate of P0 together with estimates of four adult param-
eters to compute the spawning biomass (Bs) according to
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(5.1)

where A is the survey area in units of 0.05 m2, C is the conversion factor
from g to mt, P0 × A is the total daily egg production in the survey area,
and the denominator (RSF/Wf) is the daily specific fecundity (number of
eggs/population weight (g)/day). The fecundity estimate was calculated
from the daily spawning fraction or the number of spawning females per
mature female per day (S), the average batch fecundity (F), the proportion
of mature female fish by weight (sex ratio or R), and the average weight
(in g) of mature females (Wf) (Parker 1985; Picquelle and Stauffer 1985; Lo
et al. 1996; Lo and Macewicz 2002).

Regarding sampling gear, the diameter of the CalVET net frame was 25
cm, the tow was vertical to minimize the volume of water filtered per unit
depth, the mesh size was 0.15 mm, and the tow depth was 70 m. The diam-
eter of the Bongo net frame was 71 cm, the tow was oblique at a 45° wire
angle, the mesh size was 0.505 mm, and the tow depth was 210 m when
300 m of wire was deployed. CUFES can be installed midship on a research
vessel with the intake pipe over the side of the vessel or in the bowl. It
extends 3 m below the water surface (see illustration in Checkley et al.
1997). Eggs were sieved from the water flow with the 0.5 mm nylon mesh
of the CUFES concentrator.

Results 

The survey area was post-stratified into a high-density area (Region 1) and
a low-density area (Region 2, Figure 5.9). Region 1 encompassed the area
where the egg density (eggs/min) in CUFES collections was at least 1/min.
The rest of the survey area was Region 2 (Figure 5.9). One egg/min was
equivalent to two to four eggs/plankton tow, depending on the degree of
water mixing.

We collected 1,622 CUFES samples from McArthur (1,165) and Jordan
(457) at intervals ranging from 1 to 47 min with a mean of 24.4 min and
median of 30 min. In Table 5.3 we present gear-, region-, and vessel-
specific incidence of eggs and yolk-sac larvae. Catches of eggs are shown in
Figure 5.9 and catches of yolk-sac larvae are presented in Figure 5.10.

The daily egg production in Region 1 (P0,1) was 2.33/0.05 m2 (CV =
0.17, Lo and Macewicz 2002) and egg mortality was z = 0.4 (CV = 0.15) for
an area of 88,403 km2 (25,830 nm2). The ratio (q) of egg density between
Region 2 and Region 1 from CUFES samples was 0.056 (CV = 0.025). In

Application of Adaptive Sampling to Biological Populations 109

,

Ch05 (75-122)  10/18/04  12:55 PM  Page 109



S A M P L I N G  D E S I G N S  F O R  R A R E  S P E C I E S  A N D  P O P U L AT I O N S110

Region 2, egg production (P0,2) was 0.13/0.05 m2/day (CV = 0.22) for an
area of 236,679 km2 (69,154 nm2). For the entire survey area of 325,082
km2 (94,984 nm2), daily egg production was 0.728/0.05 m2 (CV = 0.17) and
egg mortality was 0.4 (CV = 0.15).

Discussion

We compared results from the 2002 survey to results from a conventional
survey conducted in 1994 (Lo et al. 1996) to illustrate how changing to a
CUFES-aided adaptive allocation design affected the Pacific sardine assess-
ment (Table 5.4). We believe the comparison is instructive even though the
two surveys differed somewhat in area and population size. The conven-

Figure 5.9. Sardine eggs from plankton net tows (solid circle denotes positive
catch and open circle denotes zero catch) and from CUFES (stick denotes pos-
itive collection) in March–April 2002 survey. The numbers on line 93 are
California Cooperative Fisheries Investigations (CalCOFI) station numbers.
Region 1 is stippled area.
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Table 5.3. 

Number of positive tows of sardine eggs from plankton nets, yolk–sac larvae
from plankton and Bongo nets, and eggs from CUFES in Region 1 (eggs/min ≥ 1)
and Region 2 (eggs/min < 1) for both McArthur (Mc) and Jordan (Jord) cruises.

Region

1 2

Sampling 
Type Outcome Total Mc Jord Total Mc Jord Total Mc Jord

Plankton positive 130 112 18 12 6 6 142 118 24
net eggs Total 149 127 22 68 25 43 217 152 65

Plankton net positive 83 76 7 29 13 16 112 89 23
yolk–sac Total 149 127 22 68 25 43 217 152 65

Bongo net positive 4 – 4 23 – 23 27 – 27
yolk–sac Total 7 – 7 58 – 58 65 – 65

CUFES eggs positive 453 389 64 372 252 120 825 641 184
Total 495 428 67 1,127 737 390 1,622 1,165 457

Figure 5.10. Sardine yolk-sac larvae from plankton net tows (circle and tri-
angle) and from Bongo net tows (circle and square) in March–April 2002 sur-
vey. Solid symbols are positive and open symbols are zero catch.
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tional 1994 survey covered a slightly larger area than the 2002 survey
(380,175 km2 vs. 325,082 km2), and the total biomass of sardine was lower
in 1994 than in 2002 (127,000 mt in 1994 vs. 206,000 mt in 2002).

An obvious difference in the results of the two surveys was that only
11% (74/684) of CalVET net tows were positive for sardine eggs in the
1994 conventional survey, whereas 65% (142/217) were positive in the
2002 survey (Table 5.4). This indicates that CUFES-aided adaptive alloca-
tion sampling was effective in allocating plankton net tows and thereby
reducing ship time costs. The coefficients of variation for the estimates of
P0 were similar: 0.22 for the conventional survey compared to 0.17 for the
CUFES-aided adaptive allocation survey. Thus, the variance penalty for
using the ratio estimator q did not greatly diminish the benefit in using
CUFES to post-stratify and allocate all plankton net tows to Region 1. This
simple statistical comparison, however, does not reveal the greatest poten-
tial benefits in using CUFES-aided adaptive allocation sampling. Adaptive

Table 5.4. 

Sardine daily egg production (P0) from a
conventional survey (1994) compared to an
adaptive allocation survey (2002). We used
the adaptive allocation survey observations

from a CUFES to allocate plankton net tows.

Survey

Adaptive 
Variable Conventional allocation

Survey area (km2) 380,175 325,082
Plankton tows

Total 684 217
Positive for eggs 72 142
Percent positive 11 65

CUFES Samples
Total – 1,622
Positive for eggs – 825
Percent positive – 51
High-density stratum – 91
Low-density stratum – 33

Daily egg production
P0 (per 0.05 m2) 0.19 0.73
CV 0.22 0.17
Daily specific fecundity (eggs/g) 11.39 22.94

Spawning biomass (mt) 127,102 206,033
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allocation would be most useful when the population is at a lower level, as
it was in 1994, because at such levels one must survey a large area to
ensure an unbiased estimator, but the population is probably concentrated
in a very small fraction of the survey area. In addition, the high resolution
maps of spatial distribution of eggs provided by CUFES have not as yet
been incorporated into the survey design like Hanselman et al. (2001) did,
but we plan to do so in the future. We also will develop new insights into
the processes involved in selection of spawning habitats by the parents.

Any adaptive sampling requires a critical value to determine when to
take additional observations. In our case, the critical value was an egg den-
sity from CUFES that triggered full water column sampling using the
plankton net tows. We used a critical value of 1 egg/min, which was equiv-
alent to 2–4 eggs/tow, depending on the degree of water mixing. In the
past, the critical value was 2 eggs/min, which was equivalent to 4–8
eggs/tow. This range of critical values (2–8 eggs/tow) was similar to the
value (5 eggs/tow) used in a stratified sampling design for an anchovy sur-
vey in Biscay Bay in Spain (Petitgas 1997).

An optimal critical value exists for each species and survey area. The
critical value can be determined prior to the survey or during the survey
using order statistics (Thompson and Seber 1996; Quinn et al. 1999). The
extent to which the critical value can be fine-tuned to deliver an optimum
balance between CUFES and plankton net tows for a particular region,
species, and season is unknown. One factor is the large difference in catch
ratios of eggs/plankton net tow to eggs/min from CUFES among years;
this ratio ranged from 0.145 (2001) to 0.73 (1996), with most values
around 0.25. This wide range does not support the idea of fine-tuning.
These differences may overstate the expected variability for sardine
because the areas were different; 1996 samples were taken over a very lim-
ited portion of the survey area, whereas in other years, the samples were
collected from high-density spawning areas. Interestingly, our 2002 esti-
mate (0.24) was similar to that we computed for sardines off the coast of
South Africa (van der Lingen et al. 1998) and in previous years (Lo and
Macewicz 2002).

In effect, the egg density from CUFES was used as an auxiliary variable
to allocate plankton net tows. Fish eggs are constantly monitored while 
the CUFES is continuously pumping water. As a result, CUFES is a labor-
intensive operation. To apply the adaptive allocation sampling using
CUFES, fish eggs have to be easily identified by CUFES operators on the
ship. Misidentification of eggs leads to large variance and possible bias. If
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that is not possible, other variables that are easier to measure and are some-
how correlated with the variables of interest (sardine eggs in our case) can
be used to base the adaptive allocation (Thompson and Seber 1996). Auxil-
iary variables include sea surface temperature, chlorophyll, plankton vol-
umes for fish populations, and birds for some marine mammals.

Discussion and Future Directions
Ultimately, the practical efficiency (see Tukey 1986:97) of adaptive sam-
pling will depend on the extent that the method is put into practice, which
in turn depends on resolving (or alleviating) the challenges outlined in this
chapter. It has been slightly more than a decade since Thompson (1990)
introduced adaptive cluster sampling, and there is now a rich and growing
base of literature focusing on adaptive sampling. However, practical appli-
cation has lagged behind theoretical and methodological development. We
note that 10 years after its introduction the Jolly-Seber method (Jolly
1965; Seber 1965) had not been practiced much, although it is now widely
practiced in its many extensions. Hopefully, some of the material in this
chapter will encourage statisticians to continue method development and
stimulate biologists to experiment with adaptive sampling procedures.
Although we outlined some challenges, we also offered possible solutions,
and we firmly believe that more and better solutions will be discovered as
biologists practice adaptive sampling on a variety of populations and under
a variety of field conditions.

To help overcome the challenges that we outlined, we see a need for fur-
ther method development on several fronts. First, guidelines need to be
developed to help biologists identify populations that are candidates for
adaptive procedures. Second, there is a need for continued work on strate-
gies and alternative designs for restricting the final sample size. Third,
because detectability is such a pervasive issue in animal ecology, methods
of incorporating detectability into the finite population framework must
be applied. Finally, user-friendly software would be helpful to simulate
sampling before implementation and to analyze data from adaptive sam-
pling designs.

We see at least three approaches to identifying candidate populations
for adaptive sampling. Identification can be made for a specific population
through a pilot survey (Salehi and Seber 1997), for a particular species (or
taxonomic group) through experimental applications, ideally over multiple
populations/sites (Lo et al. 1997; Hanselman et al. 2003; Smith et al. 2003),
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or for statistical populations that then could be compared to biological pop-
ulations (Thompson 1994; Brown 2003). We expect that examples of the
first and second approaches will multiply as biologists experiment with
adaptive sampling procedures. Adaptive sampling might catch on within
studies of certain taxa. For example, benthic organisms and pelagic fish-
eries are taxonomic groups that appear to be good candidates for adaptive
sampling. We expect that statisticians will make substantial progress on
establishing statistical criteria to guide application. Brown (2003) found
that adaptive sampling generally performed well on statistical populations
with small network sizes. The next step is to quantify the statistical crite-
ria so that empirical measures can be used to guide application. For exam-
ple, what are the network sizes or values for dispersion indices that corre-
spond to appropriate application of adaptive sampling? Once we know the
answers to that question, we can compare those values to population meas-
urements taken in pilot surveys or to prior data to decide whether and how
to apply adaptive sampling.

There will likely be substantial progress on methods to restrict the final
sample size. In our experience, the open-endedness of the final sample size
is a major deterrent to application of adaptive sampling. In applications to
real populations, stopping rules have often been used because of the need to
restrict final sample size (Lo et al. 1997; Hanselman et al. 2003; see also case
study 2). Recent theoretical work by Salehi and Seber (2001) holds the
promise that unbiased estimators will be derived for restricted designs.
Other promising developments on the horizon include adaptive sampling
designs that do not require a neighborhood. The absence of a neighborhood
eliminates edge units and can remove much of the uncertainty in the final
sample size. Neighborhood-free designs include adaptive allocation (Lo et
al. 2001; see also case study 3) and sequential sampling designs (Christman
2003). A neighborhood-free adaptive sampling design called two-stage
sequential sampling (TSS), recently developed by M. Salehi (Isfahan Uni-
versity of Technology, Isfahan, Iran), has been shown to perform well on a
variety of populations compared to both conventional sampling designs and
neighborhood-based adaptive sampling designs (Salehi and Smith, 2004). In
the TSS design, an initial sample of secondary units (u1) is selected within
a sample of primary units. A condition is evaluated independently within
each primary unit. If the condition is met, an additional sample of second-
ary units (u2) is selected, but sampling stops there regardless of observa-
tions in the u2 units. So under the TSS design the final sample size is
restricted to be no more than u1 + u2 in each primary unit.
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Because detectability is an issue for many species, biologists might be
reluctant to even consider adaptive sampling until procedures that account
for detectability have been well established and demonstrated on species at
least closely related to the study species. Thompson and Seber (1994) pre-
sented methodology to account for detectability in adaptive sampling. Pol-
lard and Buckland (1997) developed a technique to combine adaptive sam-
pling with line transect sampling that adjusts for imperfect detectability.
When applied in a survey of harbor porpoise, adaptive sampling reduced
the variance in density estimates compared to traditional line transect
sampling because increased observations resulted in improved estimates of
detectability (Palka and Pollard 1999). Smith et al. (2000, 2001) demon-
strated methods to incorporate detectability via double sampling in fresh-
water mussel surveys that use conventional finite sampling designs, and
those methods can be extended to similar surveys that use adaptive sam-
pling. Because mark-recapture sampling is an important technique used to
account for imperfect detectability, combining mark-recapture and adap-
tive sampling would be productive.

Not many statistical techniques gain widespread acceptance without
full-featured software that performs the necessary calculations. A software
program called Visual Sampling Plan (VSP) produced by Battelle Memor-
ial Institute (download at http://dqo.pnl.gov/vsp/vspsoft.htm) is a very
powerful tool for sampling design, and it includes modern designs such as
adaptive cluster sampling and ranked set sampling. VSP was developed to
support contaminant monitoring and assessment, so the language used to
describe sampling does not match how a biologist might discuss sampling.
For example, sampling goals are framed in terms of comparisons to thresh-
olds and reference values rather than estimating density, abundance, or
biomass. Also, the range of adaptive sampling designs that are imple-
mented in VSP is limited to selecting the initial sample by simple random
sampling, two neighborhood shapes, and no option for stopping rules. We
see a need for a similarly featured software package focusing on biological
applications and including a much wider range of adaptive sampling
designs.
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